Thursday, September 20, 2018

Friday Thinking 21 Sept 2018

Hello all – Friday Thinking is a humble curation of my foraging in the digital environment. My purpose is to pick interesting pieces, based on my own curiosity (and the curiosity of the many interesting people I follow), about developments in some key domains (work, organization, social-economy, intelligence, domestication of DNA, energy, etc.)  that suggest we are in the midst of a change in the conditions of change - a phase-transition. That tomorrow will be radically unlike yesterday.

Many thanks to those who enjoy this.

In the 21st Century curiosity will SKILL the cat.

Jobs are dying - Work is just beginning. Work that engages our whole self becomes play that works. Techne = Knowledge-as-Know-How :: Technology = Embodied Know-How  

“Be careful what you ‘insta-google-tweet-face’”
Woody Harrelson - Triple 9

Content
Quotes:

Articles:



It’s the year 2038. The word “flavor” has fallen into disuse. Sugar is the new cigarettes, and we have managed to replace salt with healthy plants.
 We live in a society in which we eat fruit grown using genetics. We drink synthetic wine, scramble eggs that do not come from chickens, grill meat that was not taken from animals, and roast fish that never saw the sea.

Traditional farmers were left with no choice but to reinvent themselves, although very few had the capacity to adapt to the new kind of agriculture. Most of them were eliminated by robots. Vegetables like cauliflower, cabbage, and broccoli had seen soaring prices due to a lack of workers available to harvest them. The robots cut cost by 40%.

Agriculture is now mostly in the hands of the young generation, 70% of whom are college graduates and refer to themselves as “urban farmer-scientists.” They grow all kinds of plants in containers placed throughout cities, using efficient hydroponic setups and the latest technology to narrow the gap between citizens and their food. Farms are now located in cities and can be readily visited, but they now resemble an Apple Store more than a traditional farmstead.

In addition to this technology, the fields that remained for cultivation became sites for regenerative agricultural practices, a series of steps beyond what is required to obtain an organic label and which could contribute to combat climate change by locking carbon into the ground.

It’s the year 2038–here’s how we’ll eat 20 years in the future



All in all, we are still not at a place where digital platforms, of their own, can credibly provide an alternative to jobs.

Recent research found that people are looking to find work on platforms to diversify their income stream, provide a backup in case they lose their main job, make money from a passion, learn a new skill and explore new career and business opportunities.
These workers are “part-time” self-employed and still a minority in the labour market.

I think the future of work is not about creating jobs or matching supply and demand through online platforms. It’s about creating the right infrastructure for people to find multiple and better alternatives than a traditional employment and a policy environment that promotes a wide variety of work arrangements as a way to increase labour market participation and inclusion.

We have struggled to increase employment in recent years. Online talent platforms show real promise for injecting more transparency and dynamism into job markets. As people come to connect with work opportunities more efficiently, even larger economic ripple effects could be created in the years ahead. To capture these benefits, regulatory frameworks, corporate practices, and individual mindsets will have to change, along with technology.

With the right investments, a thoughtful approach, and continued innovation from the public and private sector, the world could move closer to the goal of a labor market that works.

How the Platform Economy Gives Superpowers to Freelancers




Financial and technical debt are now largely well-known concepts, and they play an enormously importantly role in organizations. But a third kind of debt exists — potentially more pernicious than either of its cousins — and anyone hoping to build a sustaining organization in the 21st century needs to understand it.

Last year, startup guru Steve Blank published, “Organizational Debt is like Technical Debt but worse.” In it, he introduced the concept of Organizational Debt. He defined it as “all the people/culture compromises made to ‘just get it done’ in the early stages of a startup.” The piece was shared thousands of times and sparked lots of conversation in the startup community. It seemed that the concept had struck a chord.

In spite of that success, the piece was too narrow in its focus. Organizational Debt is so much bigger than just a startup phenomenon. In fact, I believe the concept of Organizational Debt will turn out to be one of the most important concepts in the future of work. With that in mind, here’s an expanded definition to stir the pot.

Organizational Debt: The interest companies pay when their structure and policies stay fixed and/or accumulate as the world changes.

For example, a company’s travel budget may balloon one year, only to be restricted by a travel policy the next — a well intentioned control designed to reduce expense. If that policy starts costing more than it’s saving (e.g. by reducing commercial success due to a lack of facetime, frustrating top talent, etc.), it becomes an unacknowledged debt. The “interest” comes in the form of reduced speed, capacity, engagement, flexibility, and innovation that ultimately undermine the macro objectives of the firm: to survive, thrive, and achieve its purpose.

How To Eliminate Organizational Debt




This is a must read article by Bruno Latour - proposing the evolution of our concept of Gaia - of the earth as a self-regulating living system. This is highly relevant if we want to use the future in a way that can enable a flourishing world.

Gaia 2.0

According to Lovelock and Margulis's Gaia hypothesis, living things are part of a planetary-scale self-regulating system that has maintained habitable conditions for the past 3.5 billion years. Gaia has operated without foresight or planning on the part of organisms, but the evolution of humans and their technology are changing that. Earth has now entered a new epoch called the Anthropocene, and humans are beginning to become aware of the global consequences of their actions. As a result, deliberate self-regulation—from personal action to global geoengineering schemes—is either happening or imminently possible. Making such conscious choices to operate within Gaia constitutes a fundamental new state of Gaia, which we call Gaia 2.0. By emphasizing the agency of life-forms and their ability to set goals, Gaia 2.0 may be an effective framework for fostering global sustainability.

At first sight, the potential for a successful Gaia 2.0 does not seem promising. Despite large-scale mobilization of scientists, activists, and citizens, large parts of the human population are indifferent to the Anthropocene, and many deny anthropogenic climate change. In addition, there is no proof that consciousness in this context is anything but the belated and retrospective realization that mistakes had been made and might be partially redressed. Indeed, the first formulation of the Gaia hypothesis is almost exactly contemporary with what is now seen as the start of the Anthropocene. Furthermore, the examples of social Darwinism, sociobiology, and dialectical materialism suggest that drawing political lessons from nature is problematic.

Nevertheless, it is important to have a second look at the connection between the original Gaia concept and a possible Gaia 2.0, because the original Gaia has many traits that were not detectable in earlier notions of nature associated with the development of Western civilization. Before the Anthropocene, Western societies saw themselves as the only conscious agents in a passive material environment. Today, they must cope with the brutal reactions of living organisms that are continually reshaping their surroundings, creating in part their own conditions for survival. Gaia thus establishes a new continuity between humans and nonhumans that was not visible before—a relation between free agents. This understanding offers the potential to learn from features of Gaia to create a Gaia 2.0. We focus here on three of these features: autotrophy, networks, and heterarchy.


This is a nice summary of citizen science with a list of projects where would-be citizen-scientist can participate
“I think it’s extremely important that we have citizen science,” says Harvard geneticist George Church, who is director of the Personal Genome Project, one of the first serious genetics-related citizen science projects.

The Non-Scientist’s Guide to Contributing to Science

You don’t have to work in a lab to do real science. “Citizen science” offers everyone an opportunity to contribute — and technology has made it easier than ever.
In the burgeoning world of citizen science, anyone can be a scientist, or at least make a cameo in an experiment. Loosely defined as public participation in science, often through data collection, citizen science has existed in a variety of fields for decades (in some cases, centuries), including astronomy, with amateur astronomers collecting observations and taking photos, and ornithology, with amateur birders contributing data on breeding and migration. Now, citizen science is being integrated into the world of biology and medicine. The trend, which began less than a decade ago, is driven partly by the broader crowd-source phenomenon, cloud technology, and the rise of biopunks (or biohackers) who are creating their own studies to disrupt the industry. In a social media world where sharing TMI is the norm, it’s no longer a stretch to share your DNA for genome sequencing, your brainpower for dementia research or, well, your fecal matter, for gut research.


This is a 'weak' signal - but a signal nonetheless - of the possibilities in the 21st century - substantiating light - and transforming science back into practical alchemy building matter from vast reservoirs of light.

Scientists discover how to turn light into matter after 80-year quest

Imperial College London physicists have discovered how to create matter from light - a feat thought impossible when the idea was first theorised 80 years ago.

In just one day over several cups of coffee in a tiny office in Imperial's Blackett Physics Laboratory, three physicists worked out a relatively simple way to physically prove a theory first devised by scientists Breit and Wheeler in 1934.

Breit and Wheeler suggested that it should be possible to turn light into matter by smashing together only two particles of light (photons), to create an electron and a positron – the simplest method of turning light into matter ever predicted. The calculation was found to be theoretically sound but Breit and Wheeler said that they never expected anybody to physically demonstrate their prediction. It has never been observed in the laboratory and past experiments to test it have required the addition of massive high-energy particles.

The new research, published in Nature Photonics, shows for the first time how Breit and Wheeler's theory could be proven in practice. This 'photon-photon collider', which would convert light directly into matter using technology that is already available, would be a new type of high-energy physics experiment. This experiment would recreate a process that was important in the first 100 seconds of the universe and that is also seen in gamma ray bursts, which are the biggest explosions in the universe and one of physics' greatest unsolved mysteries.


Talking about new forms of matter - this is a great signal promising the capacity of superconductors to be cheaper and more widespread.

A new hydrogen-rich compound may be a record-breaking superconductor

Material appears to transmit electricity without resistance at a relatively high temperature
Superconductors are heating up, and a world record-holder may have just been dethroned.
Two studies report evidence of superconductivity — the transmission of electricity without resistance — at temperatures higher than seen before. The effect appears in compounds of lanthanum and hydrogen squeezed to extremely high pressures.
All known superconductors must be chilled to function, which makes them difficult to use in real-world applications. If scientists found a superconductor that worked at room temperature, the material could be integrated into electronic devices and transmission wires, potentially saving vast amounts of energy currently lost to electrical resistance. So scientists are constantly on the lookout for higher-temperature superconductors. The current record-holder, hydrogen sulfide, which also must be compressed, works below 203 kelvins, or about −70° Celsius (SN: 12/26/15, p. 25).

The new evidence for superconductivity is based on a dramatic drop in the resistance of the lanthanum-hydrogen compounds when cooled below a certain temperature. One team of physicists found that their compound’s resistance plummeted at a temperature of 260 kelvins (−13° C), the temperature of a very cold winter day. The purported superconductivity occurred when the material had been crushed with almost 2 million times the pressure of Earth’s atmosphere by squeezing it between two diamonds. Some samples even showed signs of superconductivity at higher temperatures, up to 280 kelvins (about 7° C), physicist Russell Hemley of George Washington University in Washington, D.C., and colleagues report in a study posted online August 23 at arXiv.org. Hemley first reported signs of the compound’s superconductivity in May in Madrid at a symposium on superconductivity and pressure.


While this innovation isn’t quite ready for prime time - we could see it in all urban environment in the next few decades. This is worth the view.

O-Wind Turbine captures energy even in the middle of dense cities

An omnidirectional wind turbine that works in the middle of big cities, which could "take urban energy harvesting to another level", is the UK's James Dyson Award winner for 2018.

Designed by Lancaster University students Nicolas Orellana and Yaseen Noorani, the O-Wind Turbine is made for high-density urban environments, instead of the open fields where turbines are typically placed.

This is because the architecture of tall buildings throws wind flow into chaos, making conventional turbines, which are only able to capture wind travelling in one direction, close to pointless.

In contrast, the O-Wind Turbine captures wind from all directions, and is designed to attach to balconies or the sides of buildings, where speeds are high.


The progression of renewable energies is and will continue to change energy geopolitics and will inevitably be part of our geoforming management efforts.

Solar and wind farms could change our weather

Switching from fossil fuels to renewable energy is an important and necessary step towards averting climate change. However, in our efforts to go green, we also need to be mindful of other consequences, both intended and unintended – and that includes how a mass deployment of renewable technology might affect its surrounding climate.

What if the Sahara desert was turned into a giant solar and wind farm, for instance? This is the topic of new research published in Science by Yan Li and colleagues. They found that all those hypothetical wind turbines and solar panels would make their immediate surroundings both warmer and rainier, and could turn parts of the Sahara green for the first time in at least 4,500 years.

The scientists behind the research looked at the maximum amount of solar and wind energy that could be generated in the Sahara desert and the transition region to its south, the Sahel. The two regions were picked as they are relatively plausible sites for such an enormous roll-out of renewable energy, being fairly near to substantial demand from Europe and the Middle East, while having limited other demands on the land. Both have substantial potential resources of wind and solar energy. Li and colleagues also suggest that The Sahel, in particular, could also benefit from economic development and more energy for desalination, providing water for cities and agriculture.


Another signal of the inevitable transformation of energy geopolitics.

Decentralized Microgridding Can Provide 90% of a Neighborhood's Energy Needs, Study Finds

"The new approach could even pave the way for 100 percent self-sufficiency in power, heat, and water."
A new report funded by the Dutch government finds that microgrid technologies could make a local “techno-economy” 90 percent self-sufficient, through the decentralised sharing of energy at the local level between multiple households.

The new approach could even pave the way for “100 percent self-sufficiency in power, heat, and water, and 50 percent self-sufficiency in food production”, according to the report’s author, energy systems engineer Florijn de Graaf.

If optimized properly, microgrids could play a pivotal role in supporting efforts to transition to renewable energy systems and meet climate targets, finds the report published by Netherlands-based energy systems company Metabolic. The report was funded by the Dutch Ministry of Economic Affairs and the Netherlands Enterprise Agency.

Under the Paris Agreement, the Dutch government has pledged to drop its carbon dioxide emissions by 80-95 percent by 2050.


This is a good signal of practical and conceptual progress being made for the transformation our transportation paradigm.

Self-Driving Cars Won't Need Accurate Digital Maps, MIT Experts Say

A rough map of all the world's roads can fit on a flash drive—and it's all that self-driving cars will need
“Maps for even a small city tend to be gigabytes; to scale to the whole country, you’d need incredibly high-speed connections and massive servers,” says Teddy Ort, a graduate student in robotics at the Massachusetts Institute of Technology’s Computer Science and Artificial Intelligence Laboratory. “But for our approach, a global map could fit on a flash drive.”

Reason: The system doesn’t need accurate measurements to the curb, the lane markings, and roadside features like sidewalks, trees, and buildings. Instead, it merely consults a very minimalist map, then uses its sensors to see its way to a point up ahead, a “waypoint” that the system chooses for being in the general direction of the ultimate goal. That is, the system does pretty much what a human driver would do when feeling his way forward in an unfamiliar place.


The future of healthcare will likely be radically different - with a significant emphasis on real-time monitoring to guide us toward wellness and preventative interventions. In the mid 2000s I saw a very plausible shift towards not simply having a family doctor - but having a family health service that can contact us to indicate early signs of possible illness or to suggest paths to sustaining or improving wellness. This is a good signal toward that orientation.

Soon your doctor will be able to wirelessly track your health—even through walls

MIT professor Dina Katabi is building a gadget that can sit in one spot and track everything from breathing to walking, no wearables required.
Imagine a box, similar to a Wi-Fi router, that sits in your home and tracks all kinds of physiological signals as you move from room to room: breathing, heart rate, sleep, gait, and more.

Dina Katabi, a professor of electrical engineering and computer science at MIT, built this box in her lab. And in the not-so-distant future, she believes, it will be able to replace the array of expensive, bulky, uncomfortable gear we currently need to get clinical data about the body.

Speaking at MIT Technology Review’s EmTech conference in Cambridge, Massachusetts, on Wednesday, Katabi said the box she’s been building for the last several years takes advantage of the fact that every time we move—even if it’s just a teeny, tiny bit, such as when we breathe—we change the electromagnetic field surrounding us.


It seems that the more we know - the more entangled living systems are. This is a good signal of the emerging paradigm of ecological entanglement. As we domesticate DNA this entanglement is revealed.
bacteria of the genus Methylobacterium. These microbes, found in all plants, are known as methylotrophs because they eat methane gas, which plants release as their cells grow. In return for methane, M-trophs, as NewLeaf calls them, offer plants diverse benefits. Some deliver molecules that encourage plants to grow; others make seeds germinate earlier and more consistently, or protect against problem fungi.
And while scientists are well aware that diverse microbial communities cooperate to affect plant health, most companies are working with one kind of microbe at a time. Indigo isn’t yet sure how to approach entire microbiomes, Goldman says, but “we certainly are thinking hard about it.”

How plant microbes could feed the world and save endangered species

Digging into the plant microbiome could help future farmers and conservationists
Certain microbial plant partners are well-known, and there are scores of microbial products already on the market. Gardeners, for instance, can spike their watering pails with microbes to encourage flowering and boost plant immunity. But “we know very little about how the products out there actually do work,” says Jeff Dangl, a geneticist at the University of North Carolina at Chapel Hill. “None of those garden supply store products have proven useful at large scale.”

Big farms can use microbial treatments. The main one applied broadly in large-scale agriculture helps roots collect nitrogen, Dangl says, which plants use to produce chlorophyll for photosynthesis.

Farmers may soon have many more microbial helpers to choose from. Scientists studying plant microbiomes have described numerous unfamiliar plant partners in recent decades. Those researchers say they’ve only scratched the surface of possibilities. Many start-up companies are researching and releasing novel microbial treatments. “The last five years have seen an explosion in this,” says Dangl, who cofounded AgBiome, which soon plans to market a bacterial treatment that combats fungal diseases. Agricultural giants like Bayer AG, which recently bought Monsanto, are also investing hundreds of millions of dollars in potential microbial treatments for plants.

The hope is that microbes can provide the next great revolution in agriculture — a revolution that’s sorely needed. With the human population predicted to skyrocket from today’s 7.6 billion to nearly 10 billion by 2050, our need for plant-based food, fibers and animal feed is expected to double.


This is an important signal toward understanding the capacity for ecology to transform itself through evolving metabolism.
French scientists studying the North Atlantic Garbage Patch found a high concentration of microbes capable of digesting plastics for energy, and Pedrotti’s research confirms the presence of such microbes. That means garbage patch dwellers could potentially be harnessed to degrade at least some floating detritus.

In the Mediterranean, we also found that the keystone species of bacteria on the plastic specialized in degrading hydrocarbons. Plastic is a polymer, composed of a chain of monomers. What these bacteria do is use the carbon in the monomers [for energy] — this is the way that they reproduce.

In general, the functions of microbial communities [on plastic] will be nitrogen fixation, gene transfer and degrading plastic. In our results, the bacteria attached to plastic are the ones that are able to degrade hydrocarbons.

On Waste Plastics at Sea, She Finds Unique Microbial Multitudes

Maria-Luiza Pedrotti is illuminating the unseen worlds of plastic-eating bacteria that teem in massive ocean garbage patches.
In the middle of the Pacific Ocean, several hundred miles from Hawaii, is a swirling cauldron of waste plastic that’s been growing steadily since the mid-1980s. Dubbed the Great Pacific Garbage Patch, it’s an ugly testament to the scale of disposable culture — but it’s also an active breeding ground for new varieties of single-celled life.

Along with colleagues on board the research schooner Tara, the oceanographer Maria-Luiza Pedrotti of France’s National Center for Scientific Research(CNRS) is stalking the mysterious inhabitants of what she calls the “plastisphere.” Her goal is to understand what kinds of microbes populate this newly evolved ecosystem and what biological tasks they perform. Beyond that, she wants to learn how they affect the broader ocean food web and — by extension — human health.

Pedrotti’s investigation of Great Pacific Garbage Patch microbes is ongoing, but her earlier study of garbage patches in the Mediterranean and elsewhere has already revealed certain distinct qualities of microbes that thrive on waste plastic. The plastic fragments that make up the patches’ confetti-like slurry, Pedrotti says, harbor large quantities of bacteria from the genus Vibrio, which includes human pathogens like cholera. Studies elsewhere have suggested other dangers brewing within the plastisphere. Earlier this year, researchers at Germany’s Leibniz Institute of Freshwater Ecology and Inland Fisheries and elsewhere reported that bacteria living on microplastics have very high rates of gene exchange, perhaps due to the generous surface area the plastics give microbes to grow on. That rapid gene exchange facilitates the spread of antibiotic resistance, which could eventually affect land-dwellers like us.


The fascinating results of our understanding of life’s creatures continues to reveal deep surprises as we expand our capacity to analyze DNA.
The Hong Kong variety was missing 4 percent of its distant cousin’s genes and had its own share of genes unique to itself. Overall, the Hong Kong placozoan genome was about as different from that of T. adhaerens as human DNA is from mouse DNA. “It was really striking,” Eitel said. “They look the same, and we look completely different from mice.”
By comparing the Placozoa variation with the average genetic differences between groups in other phyla, the German team concluded that the Hong Kong Placozoa qualified as not only a new species, but also a new genus. It might even have qualified as a new family or order in other areas of the animal tree, but to err on the conservative side, the team based their standard of genus variation on jellyfish, a genetically diverse phylum with relatively tidy divisions between levels

World’s Simplest Animal Reveals Hidden Diversity

But after spending four years painstakingly reconstructing the blob’s genome, Eitel might know more about the organism than anyone else on the planet. In particular, he has looked closely enough at its genetic code to learn what visual inspections failed to reveal. The variety of creature that biologists have long called T. adhaerens is really at least two, and perhaps as many as a dozen, anatomically identical but genetically distinct “cryptic species” of animals. The discovery sets a precedent for taxonomy, the science of naming organisms, as the first time a new animal genus has been defined not by appearance, but by pure genetics.

The modern taxonomic system, little changed since Carl Linnaeus laid it out in the 1750s, attempts to chop the sprawling tree of life into seven tidy levels that grant every species a unique label. The two-part scientific name (such as Homo sapiens) represents the tail end of a branching path through this tree, starting from the thickest limbs, the kingdoms, and ending at the finest twigs, the genus (Homo) and then the species (sapiens). The path tells you everything there is to know about the organism’s relationship to other groups of creatures, at least in theory.


We now know that some bacteria actually live on electricity, some bacteria communicate via electronic signalling (among other means), we know plants can hear, sense, taste and see. This is another signal of the richness of how living systems communicate.
The sensors also allow scientists to pick up phenomena such as bioluminescence — the production of light by an organism — and identify the animals giving off the light show.
“I can’t tell you how many times I’ve seen bioluminescence in the dark and said, 'hey, that was cool, but I have no idea what it is',” says Brennan Phillips, an oceanographer at the University of Rhode Island in Narragansett.
Roughly three-quarters of marine organisms, excluding microscopic species and those that live on the sea floor, produce light. But researchers are only beginning to learn how the creatures use this ability to communicate, to attract mates or prey, or to defend themselves, says Haddock.

The hidden lives of deep-sea creatures caught on camera

Super-sensitive devices capture bioluminescent displays and other behaviours long shrouded in darkness.
Advances in video cameras and low-light sensors are revealing animal behaviours in the deep sea that researchers have never recorded before.

The behaviours include a worm-like predator shooting off rings of blue light, and an animal anchored to the sea floor sending flashes of light dancing along its body, creating the illusion of a tiny creature swimming upwards.

Steven Haddock, a marine biologist at the Monterey Bay Aquarium Research Institute (MBARI) in California, will showcase videos of these phenomena and more for the first time on 13 September at the Deep Sea Biology Symposium in Monterey. He is one of a handful of researchers around the world who are using extremely high-resolution cameras and ultra-sensitive sensors to capture unprecedented footage of marine organisms in the wild.

“We can see natural behaviour in a way that we’ve never been able to before,” says Haddock.


The domain of methods that living systems use to communicate continues to expand.
"We know there's this systemic signaling system, and if you wound in one place the rest of the plant triggers its defense responses," says Gilroy. "But we didn't know what was behind this system."
"We do know that if you wound a leaf, you get an electrical charge, and you get a propagation that moves across the plant," Gilroy adds. What triggered that electric charge, and how it moved throughout the plant, were unknown.
Ubiquitous in cells, calcium often acts as a signal about a changing environment. And because calcium carries a charge, it can also produce an electrical signal. But calcium is ephemeral, spiking and dipping in concentration quickly. The researchers needed a way to see the calcium in real time.

Blazes of light reveal how plants signal danger long distances

In one video, you can see a hungry caterpillar, first working around a leaf's edges, approaching the base of the leaf and, with one last bite, severing it from the rest of the plant. Within seconds, a blaze of fluorescent light washes over the other leaves, a signal that they should prepare for future attacks by the caterpillar or its kin.

That fluorescent light tracks calcium as it zips across the plant's tissues, providing an electrical and chemical signal of a threat. In more than a dozen videos like this, University of Wisconsin-Madison Professor of Botany Simon Gilroy and his lab reveal how glutamate—an abundant neurotransmitter in animals—activates this wave of calcium when the plant is wounded. The videos provide the best look yet at the communication systems within plants that are normally hidden from view.

The research is published Sept. 14 in the journal Science. Masatsugu Toyota led the work as a postdoctoral researcher in Gilroy's lab. Gilroy and Toyota, now at Saitama University in Japan, collaborated with researchers from the Japan Science and Technology Agency, Michigan State University and the University of Missouri.


Another great signal for the looming problem of antibiotic resistance.

A new antibiotic uses sneaky tactics to kill drug-resistant superbugs

The drug will need to go through more testing before it’s used in humans
Drug-resistant bacteria have a new challenger.
A new molecule can kill deadly strains of common bacteria, such as Escherichia coli and Klebsiella pneumonia, that are resistant to most existing antibiotics. The drug works differently from currently available antibiotics, potentially making it harder for bacteria to develop resistance, researchers report September 12 in Nature.

In tests in cultured cells and mice, the molecule killed off a variety of common gram-negative bacteria that cause infections in humans, including E. coli and Pseudomonas aeruginosa, and was also effective against gram-positive bacteria. Gram-negative bacteria, so called because of how they appear when stained for viewing under a microscope, are notoriously difficult to attack with antibiotics because of the microbes’ hard-to-penetrate cell membrane. The drug also destroyed bacterial strains that are resistant to multiple kinds of antibiotics.  

The molecule will need to go through additional testing and tweaking before it can be used in humans, Smith says. And it’s not a permanent solution to the growing problem of antibiotic resistance. Eventually, if molecules of this type are widely used as antibiotics, bacteria will evolve resistance, as they always do. But for now, it’s a step ahead.


Fake news everywhere - perhaps the original fake news source is advertising and marketing. The digital environment provides a new platform for pernicious marketing.

BRANDS ARE PAYING INFLUENCERS $75K+ TO TRASH THEIR COMPETITORS

Inside the drama that’s taking the beauty influencer industry by storm.
Over the last three years, the Federal Trade Commission (FTC) has cracked down on Instagram influencers, forcing users to disclose sponcon and brand partnerships with a simple hashtag (#ad or #paid are preferred) or built-in branded partner ID tools. Business is booming regardless, with even teens getting a piece of that that sweet sweet sponcon cash. However as the industry matures and companies grow more dependent on the insidious form of advertising, it seems like the real money, and shenanigans, might not be in glowing reviews, but brutal takedowns.

An Instagram post by Kevin James Bennett, an Emmy Award-winning makeup artist and cosmetics developer set the beauty influencer community aflame on Tuesday. In it, Bennett describes the “mob-like behavior” of high-profile beauty influencers and the management teams he was in touch with to reviews for beauty products he was releasing under his own name. Bennett claims the influencers offered to trash a competing product in comparison to Bennett’s products in exchange for $75,000 to $85,000. Bennett also called out the all-too-common practice of skirting disclosure requirements and urged the FTC to start issuing fines:


As platform colonize the capacity for costless coordination with privateering business models - we must all pay due diligence about the ‘costs’ we pay to the conveniences we choose to embrace. The 3 min video outlines the procedure.

The Most Powerful Single Click in Your Facebook Privacy Settings

Getting a new job, recovering from an abusive relationship, engaging in new kinds of activism, moving to a different country—these are all examples of reasons one might decide to start using Facebook in a more private way. While it is relatively straightforward to change your social media use moving forward, it can be more complicated to adjust all the posts, photos, and videos you may have accumulated on your profile in the past. Individually changing the privacy settings for everything you have posted in the past can be impractical, particularly for very active users or those who have been using Facebook for a long time.

The good news is that Facebook offers a one-click privacy setting to retroactively change all your past posts to be visible to your friends only. With this tool, content on your timeline that you’ve shared to be visible to Friends of Friends or Public will change to be visible by Friends only. And the change will be “sticky”—it cannot be reversed in one click, and would be very difficult to accidentally undo.

Watch this video for a step-by-step tutorial to change this setting and make your posts more private.


And one more suggestion to help with our sense of not being interfered with.

If you haven’t already switched to Firefox, do it now

Firefox has announced plans to block all third-party trackers. Why haven’t you switched yet?
This week, Mozilla announced that its browser Firefox will start blocking all cross-site third-party trackers–the cookies hiding in the background that follow your clicks across the web, reporting your activity to advertisers as you move between websites.

Including these settings, by default, is the best way to protect users from inadvertently giving third parties data about users’ behavior. Just as people tend not to read long privacy policies, they also shouldn’t be expected to change the settings to disable third-party trackers on every single site they visit. As Mozilla’s head of product strategy Nick Nguyen writes on the Mozilla blog, “In the physical world, users wouldn’t expect hundreds of vendors to follow them from store to store, spying on the products they look at or purchase. Users have the same expectations of privacy on the web, and yet in reality, they are tracked wherever they go.” Trackers instituted by the site you’re visiting will remain in place.

Trackers don’t just track you–they also slow download times for websites. Mozilla cites a study by the ad-blocker Ghostery, which found that 55% of the time required to load a website is spent loading third-party trackers. Without these trackers, sites will load faster, making the overall user experience better. Mozilla will be testing how much blocking trackers impact load times in September–if its approach to blocking trackers does reduce load times, it will roll out the same technology to the regular Firefox browser later this year. If you’re interested in trying it out now, you can download Firefox Nightly to see how the features work.

Thursday, September 13, 2018

Friday Thinking 14 Sept 2018

Hello all – Friday Thinking is a humble curation of my foraging in the digital environment. My purpose is to pick interesting pieces, based on my own curiosity (and the curiosity of the many interesting people I follow), about developments in some key domains (work, organization, social-economy, intelligence, domestication of DNA, energy, etc.)  that suggest we are in the midst of a change in the conditions of change - a phase-transition. That tomorrow will be radically unlike yesterday.

Many thanks to those who enjoy this.

In the 21st Century curiosity will SKILL the cat.

Jobs are dying - Work is just beginning. Work that engages our whole self becomes play that works. Techne = Knowledge-as-Know-How :: Technology = Embodied Know-How  

“Be careful what you ‘insta-google-tweet-face’”
Woody Harrelson - Triple 9


Content
Quotes:

Articles:



When it comes to where you work, to the organization or team you’re a part of, do you feel you matter, that you’re valued, that you’re seen as someone with a vital to the group?

If so, you’re fortunate. When this is the case, you can be more creative, which means you will be happier, healthier, and more successful. For true creativity to emerge, you must feel seen, safe, and valued enough to allow out the nascent ideas wanting to take form and be implemented.

If not, if there is a critical, judgmental cultural voice, or many people with vocal dysfunctional judgment and criticism, then your own voice of judgment will keep those ideas tucked away.

In the context of work, when people are disconnected, when they don’t feel they belong, when there is no community, there is little psychological safety, and to truly ignite their personal creativity and everything that can come from that — innovation, powerful leadership qualities, compassion — people need to feel psychologically safe.

People need to feel they matter, they need to feel they have something valuable they bring to the organization, and they need the tools and support structure to actually contribute that which only they can — that which makes them truly of value to the whole.

Growing People — a Vital Imperative for Organizations




A new study, conducted by MIT in conjunction with the U.S. Census Bureau, analyzed 2.7 million people who started companies between 2007 and 2014 and found that among the fastest growing tech companies, the average founder was 45-years-old at the time of founding. The researchers also found that a 50-year-old is twice as likely to have a massive success—defined as a company that performs in the top 0.1 percent—than a 30-year-old. “These findings strongly reject common hypotheses that emphasize youth as a key trait of successful entrepreneurs,” write the authors of the study. “The view that young people produce the highest-growth companies is in part a rejection of the role of experience.”

In other words: Success in business, even in the fast-paced start-up world, isn’t just about age-related smarts. Wisdom, a deeper kind of knowing that can only be gained through experience, matters too. And apparently, it matters quite a bit.

An Ode to Being Old




So much of what we think is rehearsed knowledge. When we think things for the first time, they change who we are, evolving us as individuals and ultimately as a species, and they have enormous power as a result.

“It is a general principle of ecology that an ecosystem is stable not because it is secure and protected, but because it contains such diversity that some of its many types of organisms are bound to survive despite drastic changes in the environment or other adverse conditions. Herbert adds, however, that the effort of civilization to create and maintain security for its individual members, “necessarily creates the conditions of crisis because it fails to deal with change.”

It is commonly portrayed as a contest between theories that is based on a common stock of observations. First we see and then we theorize. Theories that do the best job of explaining the observations are accepted, only to be challenged by another round of theories, and so on, bringing our knowledge of the world closer to reality.

The problem with this view of science is that the common stock of observations is nearly infinite. We cannot possibly attend to everything so a theory—broadly defined as a way of interpreting the world around us—is required to tell us what to pay attention to and what to ignore. We must theorize to see. A new theory doesn’t just posit a new interpretation of old observations. It opens doors to new observations to which the old theories were blind.

Evolving the New Economy: Tim O’Reilly and David Sloan Wilson




To quote Dorsey (emphasis mine): “Today we’re committing to the people and this committee to do that work and do it openly. We’re here to contribute to a healthy public square, not compete to have the only one. We know that’s the only way our business thrives and helps us all defend against these new threats.”

Ben points out that during yesterday’s hearings, Dorsey was willing to tie the problems of public discourse on Twitter directly to the company’s core business model, that of advertising. Sandberg? She ducked the issue and failed to make the link.

You may recall my piece back in January, Facebook Can’t Be Fixed. In it I argue that the only way to address Facebook’s failings as a public square would be to totally rethink its core advertising model, a golden goose which has driven the company’s stock on an six-year march to the stratosphere. From the post:

“[Facebook’s ad model is] the honeypot which drives the economics of spambots and fake news, it’s the at-scale algorithmic enabler which attracts information warriors from competing nation states, and it’s the reason the platform has become a dopamine-driven engagement trap where time is often not well spent.

It’s the business model, folks. If we’re going to “fix” anything, we have to start there.

Why Facebook Calls It An Arms Race





The astronomer Fang Lizhi published with his wife, Li Shuxian, a popular book,Creation of the Universe (1989), which includes the best explanation that I have seen of the paradox of order and disorder.1 The explanation lies in the peculiar behavior of gravity in the physical world. On the balance sheet of energy accounting, gravitational energy is a deficit. When you are close to a massive object, your gravitational energy is minus the amount of energy it would take to get away from the mass all the way to infinity. When you walk up a hill on the earth, your gravitational energy is becoming less negative, but never gets up to zero. Any object whose motions are dominated by gravity will have energy decreasing as temperature increases and energy increasing as temperature decreases.

As a consequence of the second law of thermodynamics, when energy flows from one such object to another, the hot object will grow hotter and the cold object will grow colder. That is why the sun grew hotter and the planets grew cooler as the solar system evolved. In every situation where gravity is dominant, the second law causes local contrasts to increase together with entropy. This is true for astronomical objects like the sun, and also for large terrestrial objects such as thunderstorms and hurricanes. The diversity of astronomical and terrestrial objects, including living creatures, tends to increase with time, in spite of the second law. The evolution of natural ecologies and of human societies is a part of this pattern.

Freeman Dyson - The Key to Everything





The movement to transform science publication continues to develop alternative approaches.
“Paywalls are not only hindering the scientific enterprise itself but also they are an obstacle [to] the uptake of research results by the wider public,” says Marc Schiltz, president of Science Europe, a Brussels-based advocacy group that represents European research agencies and which officially launched the policy.

Radical open-access plan could spell end to journal subscriptions

Eleven research funders in Europe announce ‘Plan S’ to make all scientific works free to read as soon as they are published.
Research funders from France, the United Kingdom, the Netherlands and eight other European nations have unveiled a radical open-access initiative that could change the face of science publishing in two years — and which has instantly provoked protest from publishers.

The 11 agencies, who together spend €7.6 billion (US$8.8 billion) in research grants annually, say they will mandate that, from 2020, the scientists they fund must make resulting papers free to read immediately on publication (see ‘Plan S players’). The papers would have a liberal publishing licence that would allow anyone else to download, translate or otherwise reuse the work. “No science should be locked behind paywalls!” says a preamble document that accompanies the pledge, called Plan S, released on 4 September.

“It is a very powerful declaration. It will be contentious and stir up strong feelings,” says Stephen Curry, a structural biologist and open-access advocate at Imperial College London. The policy, he says, appears to mark a “significant shift” in the open-access publishing movement, which has seen slow progress in its bid to make scientific literature freely available online.


Speaking of open access - this is an interesting paper on the implication of the emerging digital environment. The implications definitely hold for humans as we are - but also may provide ways to augment what it is to be human.

Abrupt rise of new machine ecology beyond human response time

Society's techno-social systems are becoming ever faster and more computer-orientated. However, far from simply generating faster versions of existing behaviour, we show that this speed-up can generate a new behavioural regime as humans lose the ability to intervene in real time. Analyzing millisecond-scale data for the world's largest and most powerful techno-social system, the global financial market, we uncover an abrupt transition to a new all-machine phase characterized by large numbers of subsecond extreme events. The proliferation of these subsecond events shows an intriguing correlation with the onset of the system-wide financial collapse in 2008. Our findings are consistent with an emerging ecology of competitive machines featuring ‘crowds’ of predatory algorithms, and highlight the need for a new scientific theory of subsecond financial phenomena.


This is an interesting signal - from a well know analyst of disruption.
"If you're asking whether the providers get disrupted within a decade — I might bet that it takes nine years rather than 10."

Harvard Business School professor: Half of American colleges will be bankrupt in 10 to 15 years

This fall, 19.9 million college students will be traveling to college campuses across the United States to start a new school year. There are over 4,000 colleges and universities in the United States, but Harvard Business School professor Clayton Christensen says that half are bound for bankruptcy in the next few decades.

Christensen is known for coining the theory of disruptive innovation in his 1997 book, "The Innovator's Dilemma." Since then, he has applied his theory of disruption to a wide range of industries, including education.

In his recent book, "The Innovative University," Christensen and co-author Henry Eyring analyze the future of traditional universities, and conclude that online education will become a more cost-effective way for students to receive an education, effectively undermining the business models of traditional institutions and running them out of business.


This is a good signal of emerging technology that can mitigate some of our food fears for the future.

Tech Can Sustainably Feed Developing World Cities of the Future. Here’s How

In the next 30 years, virtually all net population growth will occur in urban regions of developing countries. At the same time, worldwide food production will become increasingly limited by the availability of land, water, and energy. These constraints will be further worsened by climate change and the expected addition of two billion people to today’s four billion now living in urban regions. Meanwhile, current urban food ecosystems in the developing world are inefficient and critically inadequate to meet the challenges of the future.

Combined, these trends could have catastrophic economic and political consequences. A new path forward for urban food ecosystems needs to be found. But what is that path?

New technologies, coupled with new business models and supportive government policies, can create more resilient urban food ecosystems in the coming decades. These tech-enabled systems can sustainably link rural, peri-urban (areas just outside cities), and urban producers and consumers, increase overall food production, and generate opportunities for new businesses and jobs


In a viable ecology all outputs are inputs to other processes - this is the nature of ecological metabolism - the world needs an economic paradigm consistent with a ‘metabolic economy’. Given the rate at which we are domesticating DNA - there are many examples from which a biomimicry approach can enable such an economy. Imagine developing plants that replace mining?

The tree that bleeds... metal?

Heavy metals like nickel and zinc are usually the last thing that plants want to grow next to in high concentrations.
But a specialised group, known as hyperaccumulators, have evolved to take up the normally toxic metals into their stems, leaves and even seeds.

Researchers have been studying Pycnandra acuminata in particular - a tree that grows on the island of New Caledonia in the south Pacific.
They think it may use the nickel to defend against insects.

Its latex has an unusual blue-green colour as it contains up to 25% nickel.
"Pycnandra acuminata is a large (up to 20m tall) rare rainforest tree, restricted to remaining patches of rainforest in New Caledonia," says Dr Antony van der Ent, a researcher at the University of Queensland who has been studying the tree.


And another breakthrough for the harvesting of lithium.

Yes, There Will Be Plenty Of Lithium For Energy Storage

The energy storage sector has been growing robustly, despite some concerns about the global supply chain for one key material, lithium. Well, that question could soon be moot. The California-based startup Lilac Solutions has just received a major financial boost for an innovative, low-impact method for extracting lithium from abundant brines around the globe.

Last week, Lilac Solutions was among three startups selected for investment by the non-profit organization PRIME Coalition, which focuses on a high tech approach to manage climate change.

The company’s new technology addresses a couple of key issues involved in conventional lithium extraction. Lilac describes the problem in a nutshell:
Lilac has developed a modular technology that can be scaled up (or down, presumably) in reaction to market trends. The key to Lilac’s technology is ion exchange. Lilac has identified a group of high performance materials that can absorb and release lithium from brine quickly and in high concentration, while requiring less water than conventional methods.

In contrast to a months-long wait involve in conventional brine evaporation, the Lilac process takes a matter of hours.
Lilac also makes the point that its materials can function efficiently with brine sources that conventional extraction methods can’t access, due to the presence of calcium, magnesium and other interfering substances.

In addition, Lilac anticipates that its technology can be used on low-concentration brines that would otherwise be uneconomical to process.


Domesticating photosynthesis is a serious effort that will eventually enable not only better plants for new ways to harness energy and manufacture new materials. There is a 2 min video.

Genetic Engineering with Algae Boosts Crop Photosynthesis

Researchers developed a genetic engineering technique adding algae genes to some staple crops for capturing more carbon dioxide during photosynthesis and improving their yields. A team from Australian National University in Canberra describes this process in yesterday’s issue of the journal Nature Communications.

A project in the lab of molecular biologist Dean Price and led by postdoctoral researcher Ben Long, is seeking to improve the way plant crops process carbon dioxide, to improve the efficiency of their photosynthesis in staple crops like wheat grown worldwide and cassava farmed in many developing regions. Improving the photosynthesis process — conversion of sunlight, water, and carbon dioxide to sugar — is a prime objective for boosting crop yields, and the focus of the Realizing Increased Photosynthetic Efficiency, or RIPE consortium, an international research group funding the study, and supported by the Bill and Melinda Gates Foundation, among other agencies and organizations.

An obstacle to increasing photosynthesis output in crops is a key catalytic enzyme known as ribulose-1,5-bisphosphate carboxylase/oxygenase or Rubisco that absorbs and converts carbon dioxide in the air to sugar. But that process is slow and prone to errors, since Rubisco cannot always discriminate between oxygen and carbon dioxide. The team’s solution is to genetically engineer plants with components of blue-green algae, also called cyanobacteria, that conduct photosynthesis much more efficiently.


Speaking of domesticating photosynthesis - here is a good signal of progress toward this.
Artificial photosynthesis is not revolutionary in and of itself—techniques to achieve this effect have existed for decades. What makes this recent discovery so important is its partly artificial, partly natural approach. This is the first time a man-made photosynthesis method has been modeled specifically to produce renewable energy.
The University of Cambridge and the Ruhr University Bochum team is primarily using hydrogenase, an enzyme which has remained dormant in algae for millions of years. Hydrogenase combined with synthetic pigments to provoke sunlight to split water into hydrogen and oxygen unassisted.

Artificial Photosynthesis: A New Renewable Energy Source?

An international team of scientists has made a major breakthrough for the future of sustainable fuel. They achieved this major milestone by copying the methods of some of the cleanest energy producers on the planet—plants. Scientists from the University of Cambridge and the Ruhr University Bochum have discovered a new technique that mimics the natural process of photosynthesis in plants, which could be used to produce hydrogen fuel, an extremely clean (zero carbon dioxide emissions) and essentially unlimited energy source.

In a paper published in the Nature Energy scientific journal, the team of scientists explained their proof-of-principle method for splitting water molecules into the individual hydrogen and oxygen atoms of which they are composed using sunlight. The technique mirrors photosynthesis, the natural process wherein plants split water molecules when they convert sunlight to energy to feed themselves. This achievement has far-reaching implications—Erwin Reisner, lead author of the study, told Newsweek that “solar energy conversion to produce renewable fuels and chemicals—i.e., solar fuel synthesis—is an important strategy for powering our society in a post-fossil era.”


Here is a very interesting signal - pointing to a unique human quality.
The brain cells have been named "rose hip neurons" by a team at the University of Szeged in Hungary, which played a key role in the discovery.

What Makes A Human Brain Unique? A Newly Discovered Neuron May Be A Clue

Scientists have taken another step toward understanding what makes the human brain unique.
An international team has identified a kind of brain cell that exists in people but not mice, the team reported Monday in the journal Nature Neuroscience.

"This particular type of cell had properties that had never actually been described in another species," says Ed Lein, one of the study's authors and an investigator at the Allen Institute for Brain Science in Seattle.

The finding could help explain why many experimental treatments for brain disorders have worked in mice, but failed in people. It could also provide new clues to scientists who study human brain disorders ranging from autism to Alzheimer's disease to schizophrenia.

"It may be that in order to fully understand psychiatric disorders, we need to get access to these special types of neurons that exist only in humans," says Joshua Gordon, director of the National Institute of Mental Health, which helped fund the research.


This is an important signal for the world of computing, mobile communication and the Internet of Things - file it under Moore’s law is Dead - Long Live Moore’s Law. Also it signals a shift in the center of innovation toward China. The details of its performance are worth the short read.

Huawei promises its 7nm Kirin 980 processor will destroy the Snapdragon 845

More power, delivered more efficiently
Huawei announced its newest system-on-a-chip, the Kirin 980, which boasts a number of world firsts. It’s the first 7nm mobile processor, the first one built around ARM’s Cortex-A76 CPU and Mali-G76 GPU, the first with a Cat.21 smartphone modem supporting speeds up to 1.4Gbps, and the first chip to support 2,133MHz LPDDR4X RAM. The Kirin 980 has 6.9 billion transistors, but I’ve seen it for myself and it’s no larger than a thumbnail.

The road to today’s announcement started three years ago for Huawei, with the company engaging more than 1,000 senior semiconductor design experts and churning through more than 5,000 engineering prototypes. The end result is roughly a 20 percent speed improvement and a 40 percent reduction in power consumption relative to Huawei’s previous generation.


This may be a significant breakthrough and certainly signals the rapidly emerging zero-marginal cost change in global energy geopolitics.

Low-cost, printable solar panels offer ray of hope amid energy gridlock

Australian physicist says technology could make signing up for energy accounts as easy as a mobile phone subscription
In May last year, the University of Newcastle professor Paul Dastoor used organic printed solar cells to power screens and displays at an exhibition in Melbourne.

Less than one millimetre thick and held down with double-sided sticky tape, the panels are similar in texture to a potato chip packet and can be produced for less than $10 per square metre.

Dastoor has been working on the technology for more than a decade, but has now begun a 200 square-metre installation – the first commercial application of its kind in Australia and possibly the world.

“The low cost and speed at which this technology can be deployed is exciting as we need to find solutions, and quickly, to reduce demand on base-load power – a renewed concern as we approach another summer here in Australia,” he said.


This is an great concept using simple technology and time - a way to manage water flows. The 2 min video illustrates how the sand dam works.

Fertile Grounds: Low-Tech “Sand Dams” Breathe New Life into African Drylands

Sand dams are simple but effective on multiple levels. Like normal dams, they involve walling off areas where water flows — channels that turn into streams and rivers when it rains. They trap water (up to millions of gallons per dam), which can sink into the sand for longer-term storage above the dam (then be tapped via pipes below).

Sand dams also help keep valuable soil in place, preserving and creating new areas of arable land around them. The sand also helps filter and protect these water sources from contamination and disease.

So far, the charity pioneering these (called Excellent) has worked in multiple countries across Africa to construct around 1,000 sand dams, but they are branching out, too, aiming to take this technology to South America and South Asia as well. Their strategy is to partner with communities, helping them build out sand dams and spread knowledge of their construction as well.


This is an interesting signal - not only of the emergence of a new tools to assess algorithms - but could also weakly signal the possibility of a new form of institution a virtual assemblage of protocols and tools as an ‘Auditor General of Algorithms’.

This tool lets you see–and correct–the bias in an algorithm

Accenture’s new Fairness Tool is a way to quickly evaluate whether your data is creating fair outcomes.
Algorithms might help decide the terms of your next loan, pull data from your online shopping history to help determine your credit score, assess whether you should be offered a job, or decide whether someone is likely to commit a crime in the future. In theory, AI can eliminate some bias on the part of people making decisions–but since algorithms are designed and fed data by humans, the results often still aren’t fair. A new tool from Accenture, called the Fairness Tool, is designed to quickly identify and then help fix problems in algorithms.

“I’m hoping is that this is something that we can make accessible and available and easy to use for non-tech companies–for some of our Fortune 500 clients who are looking to expand their use of AI, but they’re very aware and very concerned about unintended consequences,” says Rumman Chowdhury, Accenture’s global responsible AI lead.

The tool uses statistical methods to identify when groups of people are treated unfairly by an algorithm–defining unfairness as predictive parity, meaning that the algorithm is equally likely to be correct or incorrect for each group. “In the past, we have found models that are highly accurate overall, but when you look at how that error breaks down over subgroups, you’ll see a huge difference between how correct the model is for, say, a white man versus a black woman,” she says.

The tool also looks for variables that are related to other sensitive variables.


For anyone interested in onlines games but also wants a sense of learning something important - this site may be interesting.

Complexity Explorables

Interactive explorations of complex systems in biology, physics, mathematics, social sciences, ecology, epidemiology and ....
The site is designed for people interested in complex systems and complex dynamical processes.

The Explorables are carefully chosen in such a way that the key elements of their behavior can be explored and explained without too much math (there are a few exceptions) and with as few words as possible.

The Site now also features Flongs, short for “foot longs”. These are tutorials on specific and paradigmatic complex systems that go a bit deeper, feature more interactive elements but require a bit more math.

Almost all interactive visualizations are implemented in D3 (Data Driven Documents). All the Explorables should work on your laptop or desktop computer and on Chrome, Safari and Firefox browsers (not sure about IE).
Some of the Explorables may not work on mobile devices but hopefully the majority does.